首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2851篇
  免费   104篇
  国内免费   7篇
化学   2196篇
晶体学   44篇
力学   21篇
数学   145篇
物理学   556篇
  2023年   17篇
  2022年   12篇
  2021年   34篇
  2020年   65篇
  2019年   45篇
  2018年   45篇
  2017年   30篇
  2016年   78篇
  2015年   58篇
  2014年   93篇
  2013年   137篇
  2012年   198篇
  2011年   254篇
  2010年   123篇
  2009年   118篇
  2008年   208篇
  2007年   199篇
  2006年   202篇
  2005年   192篇
  2004年   165篇
  2003年   138篇
  2002年   137篇
  2001年   43篇
  2000年   34篇
  1999年   22篇
  1998年   29篇
  1997年   24篇
  1996年   25篇
  1995年   17篇
  1994年   15篇
  1993年   12篇
  1992年   15篇
  1991年   10篇
  1990年   11篇
  1989年   7篇
  1988年   5篇
  1987年   5篇
  1985年   10篇
  1984年   13篇
  1983年   13篇
  1982年   18篇
  1981年   9篇
  1980年   16篇
  1979年   11篇
  1978年   8篇
  1977年   7篇
  1976年   4篇
  1975年   8篇
  1974年   4篇
  1973年   4篇
排序方式: 共有2962条查询结果,搜索用时 15 毫秒
71.
A novel bridged nucleic acid monomer, 3′-amino-3′-deoxy-5-methyl-3′-N,4′-C-methyleneuridine, was successfully synthesized via a useful and convenient azetidine ring formation under Staudinger's conditions. A 1H NMR experiment and a PM3 calculation revealed that the sugar moiety of the novel bridged nucleic acid monomer, 3′-amino-3′,4′-BNA, was restricted to S-type conformation.  相似文献   
72.
Benzaldehyde are reduced to benzyl alcohol by a model compound of NAD(P)H almost quantitatively. Reductions of some other aldehydes are also mentioned.  相似文献   
73.
The chalcone synthase (CHS) superfamily of type III polyketide synthases (PKSs) produces a variety of plant secondary metabolites with remarkable structural diversity and biological activities (e.g., chalcones, stilbenes, benzophenones, acrydones, phloroglucinols, resorcinols, pyrones, and chromones). Here we describe an octaketide-producing novel plant-specific type III PKS from aloe (Aloe arborescens) sharing 50-60% amino acid sequence identity with other plant CHS-superfamily enzymes. A recombinant enzyme expressed in Escherichia coli catalyzed seven successive decarboxylative condensations of malonyl-CoA to yield aromatic octaketides SEK4 and SEK4b, the longest polyketides known to be synthesized by the structurally simple type III PKS. Surprisingly, site-directed mutagenesis revealed that a single residue Gly207 (corresponding to the CHS's active site Thr197) determines the polyketide chain length and product specificity. Small-to-large substitutions (G207A, G207T, G207M, G207L, G207F, and G207W) resulted in loss of the octaketide-forming activity and concomitant formation of shorter chain length polyketides (from triketide to heptaketide) including a pentaketide chromone, 2,7-dihydroxy-5-methylchromone, and a hexaketide pyrone, 6-(2,4-dihydroxy-6-methylphenyl)-4-hydroxy-2-pyrone, depending on the size of the side chain. Notably, the functional diversity of the type III PKS was shown to evolve from simple steric modulation of the chemically inert single residue lining the active-site cavity accompanied by conservation of the Cys-His-Asn catalytic triad. This provided novel strategies for the engineered biosynthesis of pharmaceutically important plant polyketides.  相似文献   
74.
Density functional theory calculations were carried out for the title reactions. Ethylene oxide and methylamine were adopted as reactants. Amine clusters (dimer, trimer, tetramer, and pentamer) were considered, because the combination of one oxide and one amine molecule gave a large activation energy. An amine tetramer was found to react favorably with the oxide via various zwitterionic intermediates. A back-side S(N)2 nucleophilic attack of one amine and the subsequent proton relay up to the front side provide a stabilized reaction field. The amine-alcohol mixed reactant may react readily with the oxide, because the alcoholic O-H group is in contact with the oxide oxygen with the strong hydrogen-bond stabilization.  相似文献   
75.
We previously theorized that, since the stereoselectivity of anomeric radical reactions is significantly influenced by the kinetic anomeric effect, which can be controlled by restricting the conformation of the radical intermediate, the proper conformational restriction of the pyranose ring of the substrates would therefore make highly alpha- and beta-stereoselective anomeric radical reactions possible. This theory was based on our previous results of the anomeric radical reactions with d-xylose derivatives as the substrates. We herein report the anomeric radical deuteration reactions with the conformationally restricted 1-phenylseleno-d-glucose derivatives, 2g and 3g, restricted in a (4)C(1)-conformation by an O-cyclic diketal moiety, and 4g, 5g, 6g, 7g, and 8g, restricted in a (1)C(4)-conformation by bulky O-silyl protecting groups. The radical deuterations with Bu(3)SnD, using the (4)C(1)-restricted substrates 2g and 3g, afforded the corresponding alpha-products (alpha/beta = 98:2) highly stereoselectively, whereas the (1)C(4)-restricted substrate 6g, having a trigonal (sp(2)) carbon substituent, i.e., -CHO, at the 5-position, selectively gave the beta-products (alpha/beta = 0:100). Thus, the stereoselectivity was significantly increased by the conformational restriction and was completely inverted by changing the substrate conformation from the (4)C(1)-form to the (1)C(4)-form. On the other hand, the deuterations with the (1)C(4)-restricted substrates 4g and 5g showed that the 1,5-steric effect due to the tetrahedral carbon substituent (-CH(2)OTIPS or -CH(2)OH) at the 5-axial position dominantly prevented the hydride transfer from the beta-face competing with the kinetic anomeric effect. This study suggests that, depending on the restricted conformation of the substrates to the (4)C(1)- or the (1)C(4)-form, the alpha- or beta-products would be obtained highly stereoselectively via anomeric radical reactions of hexopyranoses.  相似文献   
76.
Hydrogallation of carbon[bond]carbon multiple bonds proceeds in the presence of triethylborane as a radical initiator. Several functionalities do not interfere with this reaction. Resulting alkenyl- and alkylgallium species can be trapped by several electrophiles. Highly regioselective radical addition of an indium hydride reagent to alkynes is also achieved. Various functionalities are tolerant under the reaction conditions. The reaction proceeds with complete anti stereoselectivity. Alkenylindiums obtained via hydroindation can be employed for the following cross-coupling reaction with aryl halides in one pot.  相似文献   
77.
Generation of singlet and triplet 2-silylcyclopentane-1,3-diyls and their reactivity have been investigated in the thermal and photochemical denitrogenation of 2,3-diaza-7-silylbicyclo[2.2.1]hept-2-ene. 5-Silylcyclopentene (silyl migration product) is quantitatively obtained, while 5-silylbicyclo[2.1.0]pentane (intramolecular ring-closure product) is not detected in the denitrogenation reactions. Deuterium labeling studies clarify that 5-silylcyclopentene is formed by a suprafacial [1,2] silyl migration in singlet 2-silylcyclopentane-1,3-diyl. UDFT calculations closely reproduce the observed reactivity of the singlet diradical: The enthalpic barriers of the intramolecular ring-closure are calculated to be DeltaH++exo468 = 5.8 kcal/mol and DeltaH++endo468 = 6.7 kcal/mol, which are much higher than the energy barrier for the [1,2] silyl migration, DeltaH++468 = 2.7 kcal/mol. The notable effect of the silyl group on raising the energy barrier of the intramolecular cyclization is rationalized by an electronic configuration of the lowest singlet state of 2-silylcyclopentane-1,3-diyls.  相似文献   
78.
We have prepared several new iron(III) complexes with ligands which contain a phenol group; these are tetradentate [(X-phpy)H, X and H(phpy) represent the substituents on the phenol ring and N,N-bis(2-pyridylmethyl)-N-(2-hydroxybenzyl)amine, respectively] and pentadentate ligands [(R-enph-X)H; R=ethyl(Et) or methyl(Me) derivative and H(Me-enph) denotes N,N-bis(2-pyridylmethyl)-N″-methyl-N″-(2″-hydroxyl-benzylamine)ethylenediamine] and have determined the crystal structures of Fe(phpy)Cl2, Fe(5-NO2-phpy)Cl2, and Fe(Me-enph)ClPF6, which are of a mononuclear six-coordinate iron(III) complex with coordination of one or two chloride ion(s). These compounds are highly colored (dark violet) due to the coordination of phenol group to an iron(III) atom. When hydrogen peroxide was added to the solution of the iron(III) complex, a color change occurs with bleaching of the violet color, indicating that oxidative degradation of the phenol moiety occurred in the ligand system. The bleaching of the violet color was also observed by the addition of t-butylhydroperoxide. The rate of the disappearance of the violet color is highly dependent on the substituent on the phenol ring; introduction of an electron-withdrawing group in the phenol ring decreases the rate of bleaching, suggesting that disappearance of the violet band should be due to a chemical reaction between the phenol group and a peroxide adduct of the iron(III) species with an η1-coordination mode and that in this reaction the peroxide adduct acts as an electrophile towards phenol ring. The intramolecular interaction between the phenol moiety and an iron(III)-peroxide adduct may induce activation of the peroxide ion, and this was supported by several facts that the solution containing an iron(III) complex and hydrogen peroxide exhibits high activities for degradation of nucleosides and albumin.  相似文献   
79.
The vapor absorbency of the series of alcohols methanol, ethanol, 1‐propanol, 1‐butanol, and 1‐pentanol was characterized on the single‐crystal adsorbents [MII2(bza)4(pyz)]n (bza=benzoate, pyz=pyrazine, M=Rh ( 1 ), Cu ( 2 )). The crystal structures of all the alcohol inclusions were determined by single‐crystal X‐ray crystallography at 90 K. The crystal‐phase transition induced by guest adsorption occurred in the inclusion crystals except for 1‐propanol. A hydrogen‐bonded dimer of adsorbed alcohol was found in the methanol‐ and ethanol‐inclusion crystals, which is similar to a previous observation in 2 ?2EtOH (S. Takamizawa, T. Saito, T. Akatsuka, E. Nakata, Inorg. Chem. 2005 , 44, 1421–1424). In contrast, an isolated monomer was present in the channel for 1‐propanol, 1‐butanol, and 1‐pentanol inclusions. All adsorbed alcohols were stabilized by hydrophilic and/or hydrophobic interactions between host and guest. From the combined results of microscopic determination (crystal structure) and macroscopic observation (gas‐adsorption property), the observed transition induced by gas adsorption is explained by stepwise inclusion into the individual cavities, which is called the “step‐loading effect.” Alcohol/water separation was attempted by a pervaporation technique with microcrystals of 2 dispersed in a poly(dimethylsiloxane) membrane. In the alcohol/water separation, the membrane showed effective separation ability and gave separation factors (alcohol/water) of 5.6 and 4.7 for methanol and ethanol at room temperature, respectively.  相似文献   
80.
The monolayer properties of poly(n-stearyl methacrylate), poly(n-lauryl methacrylate), and their mixtures at various ratios of the two polymers have been studied from the measurements of their surface pressure–area isotherms at air–water interface. The monolayer properties of their mixtures have been compared with those of their corresponding copolymers. The results show that the isotherms of the mixed monolayers have two break points at higher pressures than that of poly(n-lauryl methacrylate). This suggests that the mixtures may form more stable films that consist of separate phases of the two homopolymers, although each phase may contain a small amount of the other. The isotherms of the copolymer monolayers indicate a phase transition from liquid condensed to solid film between 50 segment mole % and 70% poly(n-stearyl methacrylate). The monclayer of these copolymers has properties that differ from those of the corresponding mixtures of two pure homopolymers and is more compatible than the mixtures of pure homopolymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号